LSystems Tutorial For Artists
Umberto Roncoroni

First Published: August 2007. Updated: March, 2008

Index

1 Introduction

2 Inside LSystems

3 Symbols and rules

4 What are LSystems good for?
1
Introduction
This tutorial is for artists and designers, so it will be focused on the creative side of LSystems, on how to explore morphogenesis from the aesthetic point of view. Anyway, some technical hints are provided.
LSystems were created by biologist Lindenmayer as a method to simulate the growth of plants. But they really are an implementation of Chomsky’s generative grammars.

An LSystem is a set of terminal and non terminal symbols and some rules that define how non terminal symbols generate strings of new symbols. LSystems are also called recursive string substitution systems.
LSystems are very useful to simulate some natural growing processes, like fungi, plants, or inorganic forms like crystals, or natural patterns. Since LSystems are basically recursive processes, they are good examples of self similarity, and are often considered a kind of fractals. The von Coch curve, a well known fractal object, can be produced easily with LSystems.

LSystems are a very interesting tool for generative artists, in fact they let explore form within natural processes, they can also add scientific knowledge to artworks (grammars are linguistic models of natural processes), if well implemented they can offer an interactive laboratory for the investigation of natural and artificial forms. They can be applied to sculpture, painting, music and architecture.

The good of LSystems is that even with simple rules can be reached a great complexity. In fact, LSystems are quite simple to implement, but the complexity of the growing process challenges all the artistic skills we may have. So if the use of LSystems is straightforward, the good use of LSystems is very complex and needs a lot of experimentation.
1.1
LSystems’ architecture

A generic implementation of LSystem is designed upon the following architecture:

· The language: A set of terminal and non terminal symbols. Non terminal symbols are symbols that may generate new strings of symbols of the language. Terminal symbols always remain the same, usually they are used to scale, rotate and move the elements of the system. In fact non terminal symbols usually are interpreted as 2D or 3D objects, like Logo’s turtle graphic commands. But they could represent words or sounds as well.
· The generative grammar

Axiom: a string of symbols of the language set used as a starting point to the substitution process.
Rules: a rule is a string of any symbol of the language set that will replace a non terminal symbol. It is possible to create rules for every non Terminal symbol, random rules, context sensitive rules, etc. See below.
The substitution process: This is a recursive process that apply the rules to every non Terminal symbol of the axiom, thus generating a new and larger string. This new string will be used as axiom for a new substitution process. This process can be repeated many times, generating bigger and bigger strings.
The LSystem string: Is the final string, ready to be parsed.
· The parser: A parser is the module that will read the LSystem string token by token (char by char) and perform the right action, depending of the meaning of every symbol. Seymour Papert invented ``Turtle graphics'' as a system for translating a sequence of symbols into the motions of an automaton (the ``turtle'') on a graphics display. So “F” could mean go forward for some units in the 2D or 3D space, “+” could mean turn clockwise by some degrees, “a” could mean draw a line, etc. You have to learn the vocabulary of the specific LSystem implementation you are using.

· Editors: In the web there are many LSystems free editors, like LParser, Fractint or GDesign. While they are similar in their basic architecture, they can be and perform differently. GDesign is the only one with a visual editor and real time 2D / 3D display.
2 Inside LSystems

A generic LSystem process develops along the following steps:

· It always begins with a string of any length, called axiom, obviously made up with symbols that are included in the set of the LSystem language and grammar.

· Then some rules are applied to the non terminal symbols of the axiom, so that every one of them makes the system grow, adding new symbols to the axiom string.

· After the final string is generated (as I said, applying the rules recursively, starting with an axiom), a parser reads and translate the symbols (or tokens) in sounds or graphic elements.

· Then you can export the objects to 3D packages, like POVRay, VRML, 3DSMax, etc.
2.1 Branching

In the case of graphic applications, a LSystem language includes symbols to drive a turtle on the screen (movements, rotations, etc. Like in the Logo language) and usually the possibility to generate branches, so that you can use LSystems to simulate, for instance, the growth of plants and trees.

Many biological forms are ``branched,'' ``fragmented,'' or ``cellular'' in appearance and growth. The branching system is quite simple at a first sight, but it is very difficult to master properly.

To allow branching to occur in the turtle graphics interpretation of LSystems, we use the symbols [(``push'') and] (``pop'') to enable the turtle to follow a branch for a time at the end of which it returns to the position where it started branching. So a branch is like a snack, at the beginning of the branch the position of the root is put in the snack (push), when the branch ends data are retrieved form the snack (pop). You can nest a branch inside a branch and use multiple branches. So a branched LSystem is like a tree data structure, but you can’t use pointers so you can’t jump between different branches, so the analysis of an LSystem can be show and memory consuming.
This is an example of what happens in a simple branched LSystem.

 [image: image1.png]o=
1) acth

2) actbetal-ce]
actbetal-ecletactbl-cc]
a=linea negra

belinearoja
c=linea verde

= rofacién de 45 grados
= rotacién de .45 grados

actbetal-celetactbl-ce]

 a=black line, b=red line, c=green line, +rotate 45 clockwise, - rotate

 45 counterclockwise, [open branch (push).] close branch (pop)

Where [puts the current position and rotation on the stack and] retrieves the data at the end of the branch, so the turtle can go back to the root. You can obviously nest branches inside branches and use how many branches you want (or your PC memory lets you do…).

2.2 LSystems flavors
LSystems are deterministic systems, that means that with any grammar the result is always predictable. For this reason, many improvement have been added, resulting in different kinds of LSystems:
· Standard LSystems. Deterministic string substitution systems, with non Terminal symbols that can produce new symbols being to certain rules and Terminal symbols that represent movement on the 2D or 3D space or other operators.
· Stochastic LSystems. Rules are applied randomly, to make the Standard LSystems less deterministic.

· Parametric LSystems. Rules are chosen depending from parameters that symbols pass to each other
· Context sensitive LSystems. Rules can be chosen depending from the neighbors of the active symbol or from external data. This way LSystems can react to weather, gravity, etc.

· Timed LSystems. Rules can be applied depending on time variables (Such as iterations, loops, age, etc.)

· Interactive LSystems. This is an experiment of mine. Choose rule in real time during the system development. Lets control the growth step by step. A simple interactive LSystem is implemented in GDesign 2.1.

Stochastic rules mean that we are using some random process. Random number generators are used by generative algorithms to simulate the great variety of natural processes. Is this correct? Or is it a trick?

3
 Symbols and rules

As I said, LSystems are not an original idea of Lindenmayer, rather, they are a derivation of Chomsky’ generative grammars (in the late 1950s). A very short introduction to generative grammars and its relationship with LSystems will be provided here.

The rules of a generative grammar typically function as an algorithm to predict grammaticality (the development of the grammar) as a discrete (yes-or-no) result. In this respect, it differs from stochastic grammar which considers grammaticality as a probabilistic variable (it uses random rules). Generative grammars are used for compilers and finite automata machines.

In computer science and linguistics, parsing (more formally: syntactic analysis) is the process of analyzing a sequence of tokens to determine grammatical structure with respect to a given (more or less) formal grammar (the set of symbols and rules). A parser is thus one of the components in a compiler, where it captures the implied hierarchy of the input text and transforms it into a form suitable for further processing and normally checks for syntax errors at the same time. The parser often uses a separate lexical analyzer to create tokens from the sequence of input characters.
· The first stage is the token generation, or lexical analysis, by which the input character stream is split into meaningful symbols defined by a grammar of regular expressions (rules). The next stage is parsing or syntactic analysis, which is checking that the tokens form an allowable expression. This is usually done with reference to a context-free grammar which recursively defines components that can make up an expression and the order in which they must appear. In the Lsystems these steps are simplified into the recursive substitution process, since the Lsystem is a big string that is read sequentially.
· The final phase is semantic parsing or analysis, which is working out the implications of the expression just validated and taking the appropriate action. In the case of Lsystems, tokens are translated into turtle graphics commands.
3.1 Standard LSystems
LSystems, so far, are a sort of a small programming language. Let’s do a practical example. First we must define the language set, the axiom and the rules. We will use this simple language for all the examples.

a, b
non terminal symbols

+ - F
terminal symbols

a

the axiom (can be anything inside the language set)
a= a+b
rule 1

b=aFa-a
rule 2

a and b means draw something (a line, a 3D object, whatever) F means go forward, + turn right, - turn left. (but you can creatively add and parse all the symbols you like…)
Now we iterate the system 2 times (but you can do all the iterations you want, just be careful to the system size…)

Axiom:
a
use rule 1:a=a+b
1 it:
a + b
use rule 1: a=a+b, then +, then rule 2: b=aFa-a
2 it:
a + b + a F a – a

… and so on! The parser will read the final string and move, rotate and draw accordingly. LSystems are cool because with simple rules you can get very complex and fractal objects. Look at this example (the von Coch curve):

 [image: image2.png]axis del Sistema
a= avanza 10 unidades

+ = rotacion de + 60 grados
rotacién de - 60 grados
a—a—a (axioma)

a= ara—a+a

And this is the full string after a couple of iterations:

[image: image3.png]

3.2
Stochastic LSystems
In a stochastic LSystem we will modify the rules: instead of one rule, every non Terminal symbol can use 2 or more rules that are chosen usually by some weight parameter or random value. This how we can modify the first grammar:
a= a+b
rule 1a 50% probability

a= a-bb
rule 1b 50% probability

b=aFa-a
rule 2a 30% probability

b=aFFba
rule 2b 70% probability

So a can produce “a+b” or “a-bb” with the same probability, b has a small chance to produce “aFa-a” and a bigger chance to produce “aFFba”. This method can generate many different combination of symbols, thus, very different objects.

Stochastic LSystems are used to simulate the great variety and irregularity of natural forms.

For instance, if you build an LSystem tree, it will result always in the same branch disposition and into the same form. With stochastic rules you can always produce different trees.

3.2 Context sensitive LSystems
That is, to match a symbol for a rule, we have to consider its left k adjacent symbols and its right l adjacent symbols, where k and l are both integers larger than zero.

It is possible to consider context-sensitive L-systems where the production rules apply to a particular symbol only if the symbol has certain neighbors. We will consider only the right neighbor (> means the following right symbol). Here is an example, where only “a” has context sensitive rules:

a, b
non terminal symbols

+ - F
terminal symbols

a

the axiom (can be anything inside the language set)

a (>null or [or])
= a+b
rule 1

a (>b)
= null
rule 4

a (>+)
= a[+b]
rule 2

a (>F)
= ab
rule 3

b=aFa-a
rule 2
This describes an object with an elaborate dynamics. If an a has nothing, or a bracket on the right (this is what the notation means), it matures to a a+b. If it has a b on the right, the a disappears. Etcetera.
3.4
Timed LSystems

In a timed Lsystem symbols can have different rules depending on its age, or rules can change on every iteration, or symbols can die after some time. In GDesign you can define timed Lsystems interactively setting different rules for every iteration, or you can use the special symbol “=” that in GDesign grammar freeze an objetc for one turn/ iteration.

Here is a generic example, where only “a” has timed rules, within a system with 4 iterations:

a, b
non terminal symbols

+ - F
terminal symbols

a

the axiom (can be anything inside the language set)

a
= a+b
rule 1 iteration

a = ab
rule 2 iteration

a = a[+b]
rule 3 iteration

a = ab
rule 4 iteration

b=aFb-a
rule for all iterations

Another example with GDesign, with different rules for every iteration, to form irregular branches without random rules. Timed rules allow more scientific models of trees.

[image: image4.png]AXIOM {a.b.c,d.8,F.p.X, V.25 LPTRr, - €0, @IAL
[¥pppPPPIT</D*+++bbbb-bal[FppT<<D++++ bbi

Fules "a" Expand |
[p[FppD+++bbbbalF T> v |

[ID+++bbbEbalppT>D
D+ bbbballoppeT>
[pID+++bbbbaloppT>D.
D+~ bbabbballoaT>
[FeT@b@al

Erpnd |

El

oo s wN = O

 [image: image5.png]

a) The timed rule set b) The model after 4 iterations
Note the “:” symbol, it reduces the size of the branch of some %.

4.
What are LSystems good for?

That’s all. The basics are truly simple.
The task begins to get complicated when you try to control the complexity LSystems can generate, or you want to draw something you have in mind without the loss of the chaotic behavior that is the good of generative design…

From the point of view of software design, the task is to stay in the boundaries between order and chaos… or, as Derrida said, to play between what is inside and outside the frame (or the limits of grammars and languages)…
The aesthetic appeal of LSystems stays in the complex and unpredictable forms they can generate. But this complexity is by all means predictable, as I said before, Lsystems are deterministic, so it is quite easy to get bored with them.

Chance are that using stochastic, timed or context sensitive LSystems artists can improve the level of aesthetic creativity and get closer to the variety of forms that we admire in nature.
But to do this, the grammar can easily become too complex to understand and control. That’s why I’m actually experimenting with interactive LSystems, and with interfaces with physical computing devices. This can lead to truly generative systems, where emergence is not faked with random numbers, but arises within the interaction with the context outside the computer and its users.

So I think that to adapt generative grammas to artistic purposes a lot of work has yet to be done.
4.1
The study of form

A different discourse can be made about the pedagogic improvements that LSystems can offer to artists, designers or architects.
I’m speaking upon my own experience in the Faculty of Architecture of the SMDP University of Lima.

So what are Lsystems good or bad for?

Generative grammars and expert systems could made artworks automatically, the temptation to build this kind of systems is big, from a computer scientist or programmer point of view. But this road is not really interesting, because these systems are closed and self referent. The most good can be found when these informatics systems interact with users and the environment.

Objects made with generative systems should be used in a multimedia environment, where with multimedia I mean a synergy between digital and handmade designs. LSystems models are for digital tools (like AutoCAD or 3DSMax) what sketches and drawings are for traditional design processes.
LSystems grammars can be seen as models of natural processes, so scientific knowledge can be embedded into the design process. This can teach to students how to explore the relationship between the natural and the artificial.

The good of all generative systems is that a single algorithm can produce hundreds of designs. This shifts creativity from creatio to inventio, that means that the artist at last begin to understand that everything already exists in some or another way, and that much more care and greater skills are needed just to select all the possibilities. This is an hermeneutic process. It needs culture, and philosophy…
 .[image: image6.jpg]MUSEE DE CONFLUENCES DE LYON
CARLOS FERRATER & ASOCIADOS

 a)
 [image: image7.jpg]AVENIDA DIAGONAL

IMAGINA

‘TORRE EUROPA
CARLOS FERATER & ASOCIADOS

b)
a), b): These 2 pictures are scale models of Ferrater’s architectures. I used these designs as a starting point to investigate analog forms with generative tools. Below there are some examples, made eather with GDesign LSystems or with simple grammars in MaxScript. Copyright Carlos Ferrater & Asociados (OAB)
 [image: image8.png]

 c)
 [image: image9.png]!\y‘u% m/ 4
-

 d)
c), d): LSystems with GDesign. Rendered in POVRay.

 [image: image10.png]

 e)
c): A simple grammar apres Ferrater, in MaxScript. Rendered with 3DSMax.

 [image: image11.png]

 f)

f): A simple grammar that simulates Ferrater design a).

� Note that terminal symbols only appear in rules to the right of the =

